COMPUTER GPERATIGN

The computer industry continues to grow at record speeds. Computer shipments
exceeded $25 billion in 1983, and the rapid growth in personal computer sales will
push this number still higher each year.

Well over a million people now work in the computer industry, and this does
not encompass the millions who work with computers indirectly, including bank
clerks who put all their transactions into computers, airlines and motel employees
who work with computers to make reservations, and machinists who use computer-
controlled power tools.

In fact, computers now route long-distance telephone calls, process and issue
the checks in banks, schedule planes and trains, make weather forecasts, predict
and process the elections, and figure in so many things that entire books will be
(and have been) written just documenting the types of applications.

Computers now use the major share of the electronics components being
manufactured, and this share will continue to rise. The need for computer personnel
in all areas continues to grow: over a quarter of a million new programmers are
needed each year; the federal government’s Department of Labor continues to
maintain business machine service personnel and electronic computer operating
personnel in first and second place in a list of five fastest-growing employment
areas.

OBJECTIVES

1 This chapter first presents some background and historical information on the
development of computer science. Early calculators and the first digital computer
projects are described briefly.

COMPUTER
OPERATION

2 How a computer is used to solve a scientific problem or how an office
procedure might be organized for computer usage is discussed.

3 Anoverview of several general categories of computer systems is presented
including interactive systems, batch processing, and timeshared systems.

4 The general breakdown of a computer into five sections is discussed: these
are input, control, memory, the arithmetic-logic unit, and output.

8 Programming and programming languages are defined and some basic con-
cepts in this area introduced. A brief introduction to assembly language is followed
by a discussion of a higher-level language, Pascal.

ELECTRONIC DIGITAL COMPUTERS

1.1 The history of attempts to make machines that could perform long sequences
of calculations automatically is fairly long. The best known early attempt was made
in the 19th century by Charles Babbage, an English scientist and mathematician.
Babbage attémpted to mechanize sequences of calculations, eliminating the oper-
ator and designing a machine so that it would perform all the necessary operations
in a predetermined sequence. The machine designed by Babbage used cardboard
cards with holes punched in them to introduce both instructions and the necessary
data (numbers) into the machine. The machine was to perform the instructions
dictated by the cards automatically, not stopping until an entire sequence of in-
structions had been completed. The punched cards used to control the machine
already had been used to control the operation of weaving machines. Surprisingly
enough, Babbage obtained some money for his project from the English govern-
ment and started construction. Although he was severely limited by the technology
of his time and the machine was never completed, Babbage succeeded in estab-
lishing the basic principles on which modern computers are constructed. There is
even some speculation that if he had not run short of money, he might have
constructed a successful machine. Although Babbage died without realizing his
dream, he had established the fundamental concepts which were used to construct
machines elaborate beyond even his expectations.

By the 1930s, punched cards were in wide use in large businesses, and
various types of punched-card-handling machines were available. In 1937 Howard
Aiken, at Harvard, proposed to IBM that a machine could be constructed (by using
some of the parts and techniques from the punched-card machines) which would
automatically sequence the operations and calculations performed. This machine
used a combination of electromechanical devices, including many relays. The ma-
chine was in operation for some time, generating many tables of mathematical
functions (particularly Bessel functions), and was used for trajectory calculations
in World War II.

Aiken’s machine was remarkable for its time, but was limited in speed by
its use both of relays rather than electronic devices and of punched cards for
sequencing the operations. In 1943 S. P. Eckert and J. W. Mauchly, of the Moore
School of Engineering of the University of Pennsylvania, started the Eniac, which
used electronic components (primarily vacuum tubes) and therefore was faster, but
which also used switches and a wired plug boatd to implement the programming

of operations. Later Eckert and Mauchly built the Edvac, which had its program
stored in the computer’s memory, not depending on external sequencing. This was
an important innovation, and a computer that stores its list of operations, or pro-
gram, internally is called a stored-program computer. Actually the Edsac, at the
University of Manchester, started later but completed before Edvac, was the first
operational stored-program computer.

A year or so later, John Von Neumann, at the Institute for Advanced Study
(IAS) in Princeton, started the IAS in conjunction with the Moore School of En-
gineering, and this machine incorporated most of the general concepts of paraliel
binary stored-program computers.

The Univac I was the first commercially available electronic digital computer,
and it was designed by Eckert and Mauchly at their own company, which was later
bought by Sperry Rand. The U.S. Board of the Census bought the first Univac.
(Later Univac and half of Aiken’s machine were placed in the Smithsonian Insti-
tution, where they may now be seen.) IBM entered the competition with the IBM
701, a large machine, in 1953 and in 1954 with the IBM 650, a much smaller
machine which was very successful. The IBM 701 was the forerunner of the
704-709-7094 series of IBM machines, the first *‘big winners’’ in the large-ma-
chine category.

Quite a few vacuum-tube electronic computers were available and in use by
the late 1950s, but at this time an important innovation in electronics appeared—
the transistor. The replacement of large, .expensive (hot) vacuum tubes with small,
inexpensive, reliable, comparatively low heat-dissipating transistors led to what
are called second-generation computers. The size and importance of the computer
industry grew at amazing rates, while the costs of individual computers dropped
substantially.

By 1965 a third generation of computers was introduced. (The IBM Corpo-
ration, in introducing the 360 series, used the term third-generation as a key phrase
in their advertising, and it remains a catchword in describing all machines of this
era.) The machines of this period began making heavy use of integrated circuits
in which many transistors and other components are fabricated and packaged to-
gether in a single small container. The low prices and high packing densities of
these circuits plus lessons learned from prior machines led to some differences in
computer system design, and these machines proliferated and expanded the com-
puter industry to its present multibillion-dollar size.

Present-day computers are less easily distinguished from earlier generations.
There are some striking and important differences, however. The manufacture of
integrated circuits has become so advanced as to incorporate hundreds of thousands
of active components in volumes of a fraction of an inch, leading to what is called
large-scale integration (LSI) and very large-scale integration (VLSI). This has led
to small-size, lower-cost, large-memory, ultrafast computers. ‘

. APPLICATION OF COMPUTERS TO PROBLEMS

1.2 For many years large office forces have been employed in the accounting
departments of business firms. The clerks employed by these businesses spend
most of their time performing arithmetic computations and then entering results

APPLICATIONS OF
COMPUTERS TO
PROBLEMS

COMPUTER
OPERATION

into company books and on paychecks, invoices, order forms, etc. Most of the
arithmetic consists of repetitious sequences of simple calculations which the clerks
perform over and over on different sets of figures. Few decisions are required,
since rules usually have been defined covering almost all problems that might arise.

A typical task in a payroll office is the processing of paychecks for company
employees who work at an hourly rate.! This job involves calculating total earnings
by multiplying each employee’s hourly wage rate by the number of hours worked,
taking into consideration any overtime; figuring and then deducting taxes, insur-
ance, contributions to charity, etc.; then making out the necessary check and en-
tering a record of all figures. Figure 1.1 is a flowchart of a possible procedure.
Flowcharts such as this are standard tools of business and are used often by the
computing industry. Such flowcharts are very useful in reducing problems to the
necessary steps required and are an invaluable aid in the field of programming.
The example given deliberately omits overtime rates, irregular taxes such as FICA,
and other such complicating features. The procedure followed by a clerk in per-
forming this sequence of computations might be as follows:

1 The clerk looks up the employee’s daily work record and adds the number
of hours worked each day, obtaining the total number of hours worked during the
week. ‘

2 The total number of hours worked is multiplied by the pay rate, and the total
earnings for the week are obtained.

3 The total earnings are multiplied by the tax rate for the employee, and the
amount of withholding tax is found.

4 The withholding tax is subtracted from the total earnings.
5 Any regular deductions such as insurance are subtracted.
6 A record of each of the above operations is entered in the company books,

and a check is made out for the correct amount.

Clearly almost all the above procedures can be mechanized by a machine
which can be made to add, multiply, and subtract in the correct sequence. The
machine also must gage the following less qbvious features:

1 The ability to remember the intermediate results that have been obtained. For
instance, the total amount earned must be remembered while the tax is being
figured. It is also convenient to keep the employee’s pay rate, rate of withholding
tax, insurance rates, and the amount regularly given to charity in the machine.

2 The ability to accept information. The records of time worked, changes in
pay rates, deduction amounts, etc., must be entered into the machine.

3 The ability to print out the results obtained.

'It is interesting that 95 percent of the checks issued by the federal government are made out by
computers.

Earnings tax

Total hours worked

BUSINESS
APPLICATIONS
Total earnings
Withholding tax
FIGURE 1.1

Flowchart of pay-

The widespread acceptance of digital computers in payroll offices is largely check calculation.

due to the repetitious type of work normally done there. Mechanization of such
tasks is s\traightforward, although often complicated; but the additional accuracy
and speed, as well as the lower operating costs, which electronic business machines
make possible, has made their use especially popular in this field. ‘

BUSINESS APPLICATIONS

1.3 The main difference between the use of digital machines in business and m
scientific work lies in the ratio of operations performed to total data processed.
While the business machine performs only a few calculations using each datum, a
great volume of data must be processed. The scientific problem generally starts
with fewer data, but a great many calculations are performed using each datum.
Both types of machines still fall under the heading of digital computers, and either
type of work may be done on all computers, although some machines may be better
adapted to one or the other type of problem.

The description of the use of a computer in figuring payrolls (Sec. 1.2) is an
example of a business application and illustrates the similarity in programming the
operation of a computer and figuring out employee office procedures. First, the
problem to be solved is reduced to a series of simple operations: finding the name
of the next employee whose wages are to be computed, figuring how many hours
he or she has worked, and multiplying this figure by the hourly rate of pay. After
the procedure to be used has been worked out and explained to the clerk, the clerk
is provided with the necessary numerical information, such as pay rates, insurance
rates, etc. If the operations are further simplified, each step in Fig. 1.1 may be
performed by a different clerk. For instance, the first clerk may find the employee’s

COMPUTER
OPERATION

record and send it to the second clerk, who computes the total number of hours
worked and presents it to the next clerk, who multiplies by the wage rate, and so
on, until all the operations have been performed. Thus the breaking down of
business procedures into basic steps is a very old practice indeed.

The procedure for preparing a list of instructions for a digital computer is
basically the same. All the operations the computer is to perform are written in
flowchart form (Fig. 1.1). Then the problem is broken down into a list of instruc-
tions to the computer which specify exactly how the solution is to be obtained.
After the problem has been programmed, the list of instructions is read into the
computer. The computer automatically performs the required steps. Notice that
once the procedure has been established and the programmed steps have been read
in, the programming is finished until a change in procedure is desired. Changes in
rates, for instance, can be inserted by simply reading the new pay rates into the
machine. This does not affect the procedure.

SCIENTIFIC APPLICATIONS

1.4 Modem science and engineering use mathematics as a language for express-
ing physical laws in precise terms. The electronic digital computer is a valuable
tool for studying the consequences of these laws. Often the exact procedure for
solving a problem has been found, but the time required to perform the necessary
calculations manually is prohibitive. Sometimes it is necessary to solve the same
problem many times with different sets of parameters, and the computer is espe-
cially useful for solving problems of this type. Not only is the computer able to
evaluate types of mathematical expressions at high speeds; but also if a set of
calculations is performed repeatedly on different sets of numerical values, the
computer can compare the results and determine the optimum values that were
used.

An algebraic formula is an expression of a mathematical relationship. Many
of the laws of physics, electronics, chemistry, etc., are expressed in this form, in
which case digital computers may be easily used, because algebraic formulas may
be directly changed to the basic steps they represent. Figure 1.2 is a flowchart
illustrating the steps necessary to evaluate the expression ax® + bx® + cx + d,
given numerical values for a, b, c, d, and x. The required steps are as follows:

Multiply a times x, yielding ax.

Add b, yielding ax + b.

Multiply this by x, forming ax®> + bx.

Add c, yielding ax* + bx + c.

Multiply this by x: x(ax®> + bx + ¢), or ax® + ba® + cx.
Add d, obtaining ax® + bx* + cx + d.

o G A WN =

J It would take several minutes to perform the calculations necessary to eval-
uate this algebraic expression for a single set of values by using manually operated
calculators, but practically any computer could perform this series of operations

AX3+BXx%2+cx

AX3+BX24+CX+D

SOME DIFFERENT
TYPES OF
COMPUTER
SYSTEMS

FIGURE 1.2

several thousand times per second. Although the algebraic expression shown is
certainly much simpler than many formulas encountered by members of the engi-
neering and scientific professions, the value of using a computer for certain types
of problems may be readily seen.

SOME DIFFERENT TYPES OF COMPUTER SYSTEMS

1.5 A familiar early use of computers is in operating programs punched into
cards (or perhaps recorded on paper or magnetic tape) and run by a computer which
then prepares printouts, checks, or some form of data presentation recording the
results. ‘This is an example of batch processing. When a computer is used in this
way, the input data (and often the program) are introduced to the computer and
processed automatically, generally without operator intervention. Often many dif-
ferent jobs (or sets of data) are processed, one right after the other, or even at the
same time, but without any interaction from the system’s user during program
operation. For instance, the keypunch operators may punch many decks of cards
containing data on customers and claims. Then these cards are stacked and trans-
ported to a large computer which processes the cards, issuing checks, sending out
bills, printing records for the company, etc. This is batch processing.

Similarly, the user of a computer in a scientific laboratory may submit pro-
gram cards and data cards as a job, with an elastic band around these, along with

Flowchart of evalua-
tion of expression.

8 any notes to the operators of the machine. A number of these decks of cards are
collected, stacked, and finally run by the computer. Later the results are printed
and, perhaps even the next day, delivered to the individual users. This is also batch
processing.

In other types of systems, users interact with the computer directly, inserting
and receiving the data as desired. For instance, an airline ticket agent wishes to
make a reservation. The agent types the desired aircraft flight number and passenger
identification on a special typewriter which communicates, via the telephone lines,
with a computer. The computer looks in its memory; sees whether the flight is full,

COMPUTER and, if not, enters the passenger’s name on its list for the flight; and then com-

OPERATION municates this fact back to the airline ticket agent. If no seats are available, the
computer sends this information to the ticket agent, who attempts to interest the
passenger in another flight. In this way an airline connects all its ticket agents,
keeping a constant record of flights, passengers, and payments and doing all the
bookkeeping. The terminals where the ticket agents are located are scattered throughout
the world, but communicate with the computer via telephone lines. Motels, hotels,
stockbrokers, and many businesses have similar systems for reservations, infor-
mation transferral, and bookkeeping.

All these are called interactive systems, for the users of the system com-

FIGURE 1.3

(a) Personal com-
puter with CRT dis-
play. (b) Computer
terminal with a
grinter. (DEC, Inc.)

(a)

municate directly with the computer, and the computer responds directly. The
development of these systems has progressed in parallel with the development of
keyboard input devices, as well as output devices for users of various types, in-
cluding cathode-ray tube (CRT) displays, printers, and other data display devices.

Interactive systems are widely employed in scientific applications where users
operate their programs at a terminal connected to the computer, perhaps by tele-
phone lines, trying changes and variations at will. Experimenters can try a set of
inputs and study the results, then try other inputs and study these results. The
technique of interactive computing is used by circuit designers, architects, and
chemists, and in almost any area, including medical systems for hospital use.

Personal, or home, computers are also examples of interactive systems since
the user communicates directly with the computer, inputting data and sometimes
programs, and directly receiving results. Fig. 1.3(a) shows a personal computer
with a keyboard and CRT display.

A widely used input-output device is the terminal, shown in Fig. 1.3(b).
This is an example of a keyboard which is typewriterlike, generating a printed
record v-hen used, but also generating electric signals that can be used as computer
input. Similarly, electronic signals from a computer can be used to control the

SOME DIFFERENT
TYPES OF
COMPUTER
SYSTEMS

10

COMPUTER
OPERATION

FIGURE 1.4

terminal, and the terminal’s printer will type, under the computer’s control, the
results of calculations.

Terminals are sometimes used in systems in which the console terminal is
some distance from the computer. A special attachment called a modem is used,
which makes it possible to transmit the electric signals generated by the terminal
to the computer and receive the computer’s response back over telephone lines. At
the computer another modem is located which also can transmit or receive, and
this allows communication in both directions over telephone lines. The user of the
terminal simply dials the number at which the computer is located, establishes a
connection and the user’s identity and right to use the computer (the computer
generally checks a password), and then proceeds to use the computer.

Terminal characteristics are fairly well standardized, and the same terminals
often can use several different computers, when available. Now many companies
provide computer service to users who have terminals at their disposal. The users
simply dial the computer they prefer.

Figure 1.4 shows a terminal with a CRT display which is similar to a tele-
vision, thus providing a temporary display (instead of hard copy, which is the
printed page). This type of output device enables the computer to draw pictures or
make graphs as well as use printed characters.

The computer terminal in Fig. 1.4 is portable. An attachment on the rear
called an acoustic coupler which holds a telephone handset is provided so that

Portable computer
terminal with CRT
display. (Logitron,
Inc.)

Osciuoscope““““»
display

Keyboard

when the telephone handset is placed in the attachment, a computer can be dialed.
Once the connection is made, the terminal then generates audio tones into the
handset when keys are depressed on the keyboard. The terminal receiver also
decodes coded tones representing characters generated by the computer, displaying
the information received on the CRT display device. In this way the user of a
terminal can ‘‘converse,”” or communicate. with any compatible computer con-
nected to the telephone system. -

An acoustic coupler generates and receives audio signals from the handset
while a modem uses electric signals and is connected directly into a telephone jack.
For this reason acoustic couplers are often used in portable terminals.

When a number of users share a computer, using the computer, sometimes
via telephone lines, at the same time. the computer is said to be timeshared. By
timesharing is meant that the computer is able to alternate and interweave the
running of its programs so that severa! jobs or users can be on at the same time.
This makes for more efficient use, and the airline, motel, and hotel reservation
systems and most online systems use timesharing.

Y3

COMPUTERS IN CONTROL SYSTEMS

1.6 The ability of digital computers (o make precise calculations and decisions
at high speeds has made it possible to use them as parts of control systems. The
Air Traffic Control System used at airports is an example of computer usage in a
control system. In this system, data from a network of radar stations, which are
used to detect the positions of all aircraft in the area. are fed via communication
links into a high-speed computer. The computer stores all the incoming positional
information from the radar stations and from this calculates the future positions of
the aircraft, their speed and altitude, and all other pertinent information. A number
of other types of information are also relayed into the computer, including infor-
mation from picket ships, AEW aircraft. Ground Observer Corps aircraft spotters,
flight plans for both military and civilian aircraft, and weather information.

A computer receives all this information and from it calculates a composite
picture of the complete air situation. The computer then generates displays on
special oscilloscopes which are used by air traffic controllers. By means of radio
links, the computer automatically guides aircraft in and out of airports.

A system of this sort is called a real-time control system because information
must be processed and decisions must be made in real time. When a computer is
used to process business data or to perform most scientific calculations. time is not
as critical a factor. In real-time systems. the computer must “*keep up,”’ processing
all data at high speeds in order to be effective.?

Other examples of real-time control applications include oil refineries and
other manufacturing areas which use the computer to control the manufacturing
processes automatically. Digital computers are used to guide machine tools which
perform precision-machining operations automatically, as shown in Fig. 1.5. Fur-

*Most reservation systems would be considered real-time systems by their operators, since delays of
any consequence would be detrimental to business.

11

COMPUTERS IN
CONTROL SYSTEMS

12

FIGURE 1.5

l

terminal!
-held ‘sﬁé?ﬁer

J

Computer-controlled
machine tools with
interactive terminal-
based plant commu-
nication system.
(1BM.)

ther, both staffed and nonstaffed space vehicles carry digital computers which
perform the necessary guidance functions, while a network of computers on the
ground monitors and directs the progress of the flight.

Most real-time control systems require an important device known as an
analog-to-digital (A/ID) converter. The inputs to these systems in many cases are
in the form of analog quantities such as mechanical displacements {for instance,
shaft positions) or temperatures, voltages, pressures, etc. Since the digital computer
operates on digital rather than analog data, a fundamental ‘‘language’’ problem
arises which requires the conversion of the analog quantities to digital represen-
tations. The A/D converter does this.

The same problem occurs at the computer output, where it is often necessary
to convert numerical output data from the computer to mechanical displacements
or analog-type electric signals. For instance, a “‘number’” output from the computer
might be used to rotate a shaft through the number of revolutions indicated by the
output number. A device which converts digital-type information to analog quan-
tities is called a digital-to-analog (D/A) converter. A description of both A/D and
D/A converters is found in Chap. 7.

The basic elements of a control system using a digital computer consist of
(1) the data-gathering devices which perform measurements on the external envi-
ronment and, if necessary, also perform analog-to-digital conversion on the data
from the system to be controlled; (2) the digital computer itself, which performs
calculations on the data supplied and makes the necessary decisions; and (3) the

means of communication with, or control over, certain of the elements in the
external environment. If no person aids the computer in its calculations or deci-
sions, the system is considered to be fully automatic; if a human being also enters
the control loop, the system is defined as semiautomatic.

Figure 1.5 shows a computer being used in a manufacturing application.
Because of their high speed, computers, often operating unattended. can measure,
test, analyze, and control manufacturing functions as they occur. Computers can
handle shop floor control, quality control testing, materials handling, and produc-
tion monitoring. The typewriterlike station to the left in Fig. 1.5 is used to com-
municate with the system.

BASIC COMPONENTS OF A DIGITAL COMPUTER

1.7 The block diagram in Fig. 1.6 illustrates the five major operational divisions
of an electronic digital computer. Although presently available machines vary greatly

in the construction details of various components, the overall system concepts

remain roughly the same.
A digital computer may be divided into the following fundamental units:

1 Input The input devices read the necessary data into the machine. In most
general-purpose computers, the instructions that constitute the program must be
read into the machine along with all the data to be used in the computations. Some
of the more common input devices are keyboards. punched-card and punched-
paper-tape readers, magnetic-tape readers, and various manual input devices such
as toggle switches and pushbuttons.

2 Control The control section of a computer sequences the operation of the
computer, controlling the actions of all other units. The control circuitry interprets

13

BASIC
COMPONENTS OF A
DIGITAL COMPUTER

FIGURE 1.6

Block diagram of typ-
ical digital computer.

14

COMPUTER
OPERATION

the instructions which constitute the program and then directs the rest of the ma-
chine in its operation.

3 Memory The memory, or storage, section of the computer consists of the
devices used to store the information that will be used during the computations.
The memory section of the computer is also used to hold both intermediate and
final results as the computer proceeds through the program. Memory devices are
constructed so that it is possible for the control unit to obtain any information in
the memory. The time required to obtain information may vary somewhat, how-
ever, and is determined by the type of device used to store the information. Com-
mon storage devices are integrated-circuit memories, magnetic tape, and magnetic
disks.

4 Arithmetic-logic unit The arithmetic-logic units of most computers are ca-
pable of performing addition, subtraction, division, and multiplication as well as
some ‘‘logical operations’’ which are described later. The control unit tells the
arithmetic-logic unit which operation to perform and then sees that the necessary
numbers are supplied. The arithmetic element can be compared to the calculating
machines described previously in that the numbers to be used are inserted, and it
is then directed to perform the necessary operations.

5 Ouwpur The output devices are used to record the results obtained by the
computer and present them to the outside world. Most output devices are directed
by the control element, which also causes the necessary information to be supplied
to them. Common output devices are CRT displays, printers, card-punching ma-
chines, and magnetic-tape drives. There are also many other types of output de-
vices, such as lights, buzzers, and loudspeakers.

CONSTRUCTION OF MEMORY

1.8 The inner, or high-speed, memory is broken into a number of addresses, or
locations. At each address a group of digits is stored and is handled by the computer
as a unit. The group of digits stored at each address in memory is generally referred
to as a memory word.> Each address in memory is assigned a number, and then
the address is referred to by that number. We say that address 100 contains the
value 300 or that address 50 contains an instruction word. In most computers,
instruction words may be stored in the same locations as number or data words,
which makes the memory more flexible. Notice also that instruction words, when
stored in the computer, consist of a group of digits.

The time it takes to obtaini a word from a storage device is called the acces

There are actually two ways of organizing a memory now in general use. One way is to store enough
bits for a character at each address (a character is a 1 or 2, an A or B, etc.). These systems are called
character-addressable or byte-addressable, systems. The second way is to store a complete operand.
or instruction word, at éach address. These systems are called word-addressable systems. As might be
guessed, word-addressable systems have more information at each address. The character-addressable
systems are more used, but we simplify the initial description by assuming that each suecessive address
contains a word, as in word-addressable systems, and describe other systems later.

time. The access time of the storage devices used in a macnine has a profound
effect on the speed of the computer. One factor which for a long time impeded the
construction of high-speed computers was the lack of reliable storage devices with
short access times. The development of storage devices (such as integrated-circuit
memories) with very short access times plus the ability to store information for an
indefinite time was a great forward step.)

INSTRUCTIONS

1.9 Computers can make simple logical decisions. Many of these decisions are
based on numbers and so are quantitative rather than qualitative. The sort of nu-
merical decision the computer might make is whether one number is larger than
another or whether the result of some series of calculations is positive or negative.
However, most decisions made by clerical workers and scientists are also based
on figures. For instance, once physical phenomena have been expressed in for-
mulas, the solutions to specific problems are expressed by means of numbers.

As mentioned, the digital computer does not figure out its own solution to
problems, but must be told exactly how to solve any given problem as well as how
to make all decisions. Preparing a list of instructions which tells the computer how
to perform its calculations is called programming. The procedure for programming
a problem generally consists of two separate steps. The first step, planning the
program, involves determining the sequence of operations required to solve the
problem. It sometimes consists in breaking the problem down into flow diagrams
such as those illustrated earlier. Once the problem has been reduced to this form,
it is ready to be coded; this is the second step. Coding consists in writing the steps
outlined in the flowchart in a special language which can be interpreted by the
computer. The final coded program consists of a list of instructions to the computer,
written in a special format which details the operations the computer is to perform.*

We now describe a type of computer language called assembly language.
The instruction words which direct the computer are stored in the computer in
numerical form. The programmer rarely writes instructions in numerical fo-m,
however; instead, each instruction to the computer is written by using a letter code
to designate the operation to be performed, plus the address in memory of the
number to be used in this step of the calculation.® Later the alphabetic section of
the instruction word is converted to numerical form by a computer program called
an assembler. This is described later:

An instruction word as written by the programmer consists of two parts: (1)
ihe operation-code part, which designates the operation (addition, subtraction, mul-
tiplication, etc.) to be performed, and (2) the address of the number to be used.

“The instructions described are typical instructions for a single-address computer. Computers are also
constructed which use two or more addresses in each computer instruction word. These computers are
described in Chap. 10. The single-address type of instruction is very straightforward and is used in the
illustrations in this chapter.

5The following is a description of machine-language or assembly-language, programming. Applications
are often written in a high-level language such as BASIC, Fortran, or Pascal which then must be
translated to machine language before the computer can run the program.

15

INSTRUCTIONS

16

COMPUTER
OPERATION

A typical instruction word written by the programmer is
ADD 535

This instruction word is divided into two main parts: first, the operation-code part,
consisting of the letters ADD, which directs the computer to perform the arithmetic
operation of addition; and second, the address part, which tells the computer the
address in storage of the number to be used.

Note that the second section of the instruction word gives only the location
(address) in storage of the number to be added. The number 535 in the instruction
shown is not the actual number to be added, but only tells the computer where to
find the desired number. To what is the number at address 535 added? It is to be
added to the number which is already in the arithmetic-logic unit in a storage
device, or register, called an accumulator. If the accumulator contains zero before
the instruction is executed, the accumulator will contain the number which is stored
at address 535 after the instruction has been performed. If the accumulator contains
the number 500 before the instruction is performed and if the number stored at
address 535 is 200, then the number stored in the accumulator after the ADD
operation will be 700. To illustrate this principle more fully, several more instruc-
tions are explained in Table 1.1.

INSTRUCTION WORD FUNCTION PERFORMED BY
OPERATION CODE __ ADDRESS PART INSTRUCTION

m;us ampti of atl ,
, and the n?xdmber atpzm '
dded to it. After the instruc-
~tion “iis = performed, the. accumulator
~coptains the number in storage at ad-

430. CLA isa mnemomc code for

~‘aﬂﬂew:bthe numbet in the accumulator.

5, -After the jnstruction, the accumulator.,

Lk GO s’xhe sum of the number it pre-

'suB 2387 %" " The number located ataddrmZSSmthe'

“mermiory is:subtracted from the aumber: |
. in the accumulator, and the difference i is
placed in the accumuiator. '

STO 433 The number in the accumulator is starad,
: at address 433. Any information previ-

. ...aushyin this address is destroyed. The
- number which was in the accumulator -
" before the instruction was performed re-
T " mains in the accumulator. This i§ gen-

’ S Ty erally referred to as a STORE instriction.

:machme is ordered to stop The
mf)er in the aeeumulamr remains.

W

i

TABLE 1.2

INSTRUCTION WORD CONTENTS OF ACCUMULATOR
ADDRESS IN OPERATION ADDRESS AFTER INSTRUCTION IS
MEMORY CODE PART PERFORMED
1 CLA 6 <200
2 ADD 7
3 ADD 8
4 STO -9
5 HLT = - 0
§ contains the number 200 e
7 contains the number 300 ..
“8 contains the number 400

A short program which adds three numbers by using these instructions is
shown in Table 1.2.

The program operates as follows: The control section starts with the instrac-
tion word at address 1, which clears the accumulator and then adds the number at
address 6 into it. The instruction at address 2 adds the number at address 7-to the
number already in the accumulator. This produces the sum of 200 + 300, or 500.
The third instruction adds the contents of address 8 to this sum, giving 900 in the
accumulator. This number is then stored in memory at location 9 in the memory.
The machine is ordered to halt. Notice that the machine is stopped before it reaches
the data. This is to prevent the control element from picking up the data, for
instance, the number 200, which is at address 6, and trying to use it as an instruc-
tion.

There is no difference between a number and an instruction as far as storage
is concerned. Both are stored in the same basic form. So the instructions are
generally placed in a different section of the memory from the data to be used.
The computer progresses through the instructions and is stopped before it reaches
the data. The fact that either instructions or data may be stored at all addresses
makes the machine more flexible. Either a large amount of data and a few instruc-
tions, or many instructions and few data, can be used as long as the total amount
of storage available is not exceeded.

MULTIPLICATION INSTRUCTION

1.10 By adding another instruction, multiplication, it will be possible to write
more sophisticated programs (see Table 1.3).

TABLE 1.3

INSTRUCTION WORD

ADDRESS
PART

FUNCTION

The number eddress: ;

OPERATION CODE
MUL ‘\’j)

S

17

MULTIPLICATION
INSTRUCTION

COMPUTER
OPERATION

TABLE 1.4

INSTRUCTION WORD

ADDRESS IN OPERATION ADDRESS CONTENTS OF ACCUMULATOR AFTER
MEMORY CODE PART INSTRUCTION IS PERFORMED

e s o

The program in Table 1.4 evaluates the expression ax® + bx® + cx + d.
The actual quantities for @, b, ¢, d, and x are stored in memory at locations 22,
23, 24, 25, and 26, respectively. Notice that the program shown evaluates the
expression for any values which might be read into these locations. The expression
could be evaluated for any number of values for x by running the program for one
value of x, then substituting the succeeding values of x into register 26, and re-
running the program for each value. In practice, it is possible to have the program
automatically repeat itself by means of special instructions. All the various desired
values for x can be stored and the equation solved for each x without stopping the
computer.

It can be seen from Table 1.4 that very complicated algebraic functions can
be evaluated by using only a very few instructions. The program shown can be
performed by a high-speed computer in less than 1/1,000,000 second(s). The value
of such speed in the solution of the more complex problems encountered in engi-
neering and science may be readily seen. Computers are making possible engi-
neering techniques which were previously unusable because of the high costs in
time and money of lengthy computations.

BRANCH, SKIP, OR JUMP INSTRUCTIONS

1.11 All the instructions ¢xplained so far have been used to perform problems
in simple arithmetic. However, the computer is able to repeat the same sequence
of instructions without being stopped and restarted. This facility is provided by a
group of instructions referred to as branch, skip, or jump instructions. These in-
structions tell the computer not to perform the instruction at the address following
that of the instruction being performed, but to skip to some other instruction. Some
branch instructions are unconditional in nature and cause the computer to skip
regardless of what the conditions may be. Other branch instructions are conditional
and tell the computer to skip only if certain things are true. Branch instructions

TABLE 1.5

ADDRESS
OPERATION -CODE PART FUNCTION

2 e

enable the computer to make logical choices which alter its future actions. Two
typical instructions are shown in Table 1.5.

The short program shown in Table 1.6 illustrates several very important
principles. The purpose of the program is to add all the even integers from 2 to
100. The program is of the repetitious sort where a few short orders are used to
generate a program which runs for some time by repeating the same sequence of
instructions. The program illustrates how the ability to branch on a negative number
can be used to form a counter that will determine how many times a part of a
program is repeated.

The number stored in location 39 increases by 2 each time the program runs
through. The total of these numbers is stored in address 43 which, after the program
has halted, contains the total of all the numbers that have been in location 39. The
number stored at address 40 decreases in magnitude by 1 each time the program

TABLE 1.6

INSTRUCTION WORD CONTENTS OF ACCUMULATOR

OPERATION ADDRESS
ADDRESS CODE PART 1ST TIME 2D TIME LAST TIME

19

BRANCH, SKIP,
OR JUMP
INSTRUCTIONS

20

COMPUTER
OPERATION

runs through, until the number stored at 40 is no longer negative. When the program
““falls through'” the BRANCH WHEN MINUS (BRM) instruction, it perforins the
next instruction in sequence, which is a HALT instruction. Zero is considered to
be a positive number, although this varies with different machines. Notice that the
first section of the program will cycle a number of times equal to the negative
number stored in register 40. A simulated counter is formed by the — 50 stored at
address 40, the 1 stored in location 42, and the instructions at addresses 6 through
9. Any sequence of instructions which precedes a counter of this sort will be run
through the number of times determined by the counter. This is an especially useful
device for iterative schemes when the number of iterations required is known.

PROGRAMMING SYSTEMS

1.12 The preceding discussion showed a basic procedure for writing an assem-
bly-language program. There are, however, various types of programming lan-
guages which greatly facilitate the actual writing of programs. One of the first
things the programming profession discovered was that the greatest aid to pro-
gramming was the computer itself. It was found to be capable of translating written
programs from a language which was straightforward and natural for the program-
mer to computer, or machine, language.

As a result, programs were written whose purpose was to read other programs
written in a language natural for the programmer and to translate them into the
computer’s language. The program systems now in use are primarily of two types:
assemblers and compilers.® The assembler and the compiler are intended for the
same basic purpose: Each is a program designed to read a program written in a
programming language and to translate it. The assembler or compiler is read into
the computer first and then is followed by the program to be translated. After
translation the assembler or compiler generally stores the machine-language pro-
gram on magnetic disks or tape or in some other kind of memory so that it can be
performed when desired.

The purpose of this procedure is to enable programmers to write the oper-
ations they want the computer to perform in a manner that is simpler than machine
language. The language which the programmer writes is called a programming
language, and a program written in such a language is called a source program.
The translated program in machine (or some intermediate) language is called an
object program.

To return to the subject of the translator programs, an assembly language
differs from a compiler language in that most assembly languages closely resemble
machine languages, primarily because each instruction to the computer in assembly
language is translated to a single computer word. In compiler systems, a single
instruction to the computer may be converted to many computer words.

There is also a translator type of program that translates one line or statement at a time, called an
interpreter, and is used with such programming languages as BASIC. Each statement is run by the
computer after translation. Interpreters perform the some general functions as compilers but need not
translate an entire program before operation.

ASSEMBLY ‘LANGUAGES

1.13 Each instruction to the computer in a programming language is called a
statement. The basic characteristic which most distinguishes an assembly language
is that each statement is translated by the assembly program to a single machine
instruction word.” As a result, an assembly language resembles machine ianguage.
The facilities offered the programmer-are substantial, however, and generally in-
clude the following:

1 Mnemonic operation codes The programmer can write instructions to the
computer using letters instead of binary numbers, and the letters which designate
a given operation are arranged into a mnemonic code that conveys the ‘‘sense’’ of
the instruction. In the preceding example of coding, the mnemonic codes ADD,
MUL, CLA, etc., were used. The assembler would translate these mnemonic codes
to the correct machine binary numbers and ‘‘package’’ these into the instruction
words constituting the object program.

2 Symbolic referencing of storage addresses One of the greatest facilities
offered the programmer is the ability to name the different pieces of data used in
the program and to have the assembler automatically assign addresses to each name.

If we wish to evaluate the algebraic expressiony = ax®> + bx2 + cx + d
as in Sec. 1.10, the program can appear as shown in Table 1.7.

Notice that the address of the first instruction was simply given the name
FST, consisting of three letters, and that no further addresses in memory were
specified. If we tell the assembler that FST = 1, the assembler will see that the
instructions are placed in memory as in the program in Sec. 1.10. Notice also that
the operands were simply given the variable names X, A, B, C, and D, as in the
equation, instead of assigning addresses in memory to them. The assembly program
will assign addresses to these names of variables, and if it assigns A to 22, B to
23, C to 24, etc., the final program will look as in Sec. 1.10.

"This is not, of course, strictly the case (sometimes a single statement may be translated to several
words), but generally translation is into a single instruction word that can require one or more memory
locations or words.

TABLE 1.7

INSTRUCTION WORD
ADDRESS IN MEMORY OPERATION OPERAND

%

21

ASSEMBLY
LANGUAGES

COMPUTER
OPERATION

The assembler will also see that actual arithmetic values for X, A, B, C, and
D are placed in the correct locations in memory when the data are read into the
computer.

3 Convenient data representation This simply means that the programmer can
write input data as, for instance, decimal numbers or letters, or perhaps in some
form specific to the problem, and that the assembly program will convert the data
from this form to the form required for machine computation.

4 Program listings An important feature of most assemblers is their ability
to print for the programmer a listing of the source program and the object program,
which is in machine language. A study of these listings will greatly help the
programmer in finding any errors made in writing the program and in modifying
the program when this is required.

B Error detection An assembler program will notify the programmer if an
error has been made in the usage of the assembly language. For example, the
programmer may use the same variable name, for instance, X, twice and then give
X two different values; or the programmer may write illegal operation codes, etc.
This sort of diagnosis of a program’s errors is very useful during the checking out
of a new program.

Assemblers provide many other facilities which help the programmer, such
as the ability to use programs which have already been written as part of a new
program and the ability to use routines from these programs as part of a new
program. Often programmers have a set of different programs which they will run
together in different combinations. This is made possible simply by specifying to
the assembler the variable names in the different programs which are to be the
same variable, the entry and exit points for the programs, etc. Thus programs
written in an assembly language can be linked together in various ways

Let us consider the short program in Table 1.6 which sums the even integers
from 0 to 100. This will illustrate the use of symbolic names for addresses when
a branch instruction is used. The assembly-language program is shown in Table
1.8.

TABLE 1.8

INSTRUCTION WORDS
ADDRESS OPERATION OPERAND COMMENTS

Notice that the values of the variables were specified before the program was
begun; DEC indicates that the values given for A, B, C, D, and E are in decimal.
This enables the assembler to locate the variables in the memory and assign values
to them.® Also note that the transfer instruction BRM was to the symbolic address
N.

If the assembler were told to start the program at address 1 in the memory,
conversion to object or machine language would make it look similar to the one
in Sec. 1.10, provided the assembler decided to store A, B, C, D, and E in locations
39 through 43. ’

HIGH-LEVEL LANGUAGES

1.14 More advanced types of programming languages are called compiler lan-
guages, high-level languages, or problem-oriented languages. These ‘are the sim-
plest languages to use for most problems and are the simplest to learn. These
languages often reveal very little about the digital machines on which they are run,
however. The designer of the language generally concentrates on specifying a
programming language that is simple enough for the casual user of a digital com-
puter and yet has enough facilities to make the language and its associated compiler
valuable to professional programmers. In fact, many languages are almost com-
pletely computer-independent, and programs written in one of these languages may
be run on any computer that has a compiler or translator for the language in its
program library.

Certain languages have been very successful and have found extremely wide
usage in the computer industry. The best known are Fortran, Pascal, BASIC, and
Cobol. A program written in these langauges can be run on most computers that
have a memory size large enough to accommodate a compiler, because most manu-
facturers will prepare a compiler for each of these for their computer.

The following section gives an introduction to a specific high-level language.
Those who are familiar with languages such as BASIC, Fortran, or Cobol may
omit it. The text is arranged so that subsequent material in the book does not
depend on the following section, and this section can be omitted or studied at a
later time.

A SHORT INTRODUCTION TO PASCAL

*1.15° The distinguishing feature of a compiler and its associated programming
language is that a single statement which the programmer writes can be converted
by the compiler to a number of machine-language instructions. In Pascal, for
instance, a single statement to the computer can generate quite a number of in-
structions in object, or machine, language. As a result, the language is not partic-
ularly dependent on the structure of the computer on which the program is run,
and the following programs may be run on any computer with a Pascal compiler.

®In a sense, the operation cqde DEC says ‘‘assign the decimal value in the operand column to the
variable name in the address column.’’
SAll sections marked with an asterisk can be omitted on a first reading without loss of continuity or of

overall understanding.
i

A SHORT
INTRODUCTION
TO PASCAL

24

COMPUTER
OPERATION

The Pascal compiler is written in assembly or machine language, and a Pascal
program is ultimately run in machine language. For this reason, knowledge of the
computer and its organization can be of great use to those writing and checking
out programs. Further, for the systems programmers (those who maintain, modify,
and prepare the compilers, assemblers, load programs, etc.) a knowledge of the
computer on which the program is operated is indispensable. The fact that compilers
and computers are backed up by an army of technical personnel—from systems
programmers through design and maintenance engineers, technicians, and computer
operators—is often overlooked by the user of the machine whose program is mi-
raculously debugged and operated. Like most electronic devices, digital computers
are not as independent and self-supporting as they may appear to casual users.

Thus forewarned, let us examine the structure of Pascal in a little detail,
leaving a more complete exposition to one of the references.

To begin, consider the following simple complete Pascal program:

PROGRAM ADDNUMS;

VAR
A, B, Y: INTEGER;
BEGIN
A= 50;
B :=20;
Y:=A+B
END.

The first line of any Pascal program must begin with the word PROGRAM,
followed by the name of the program. The name of the above program is ADDNUMS.
The section of program

VAR
A, B, Y: INTEGER,;

is called a variable declaration section. This declares the variables A, B, and Y
to be of type INTEGER, specifying that A, B, and Y may assume integral values.
The words BEGIN and END specify the starting and ending points of the section
of the program which is ultimately run. The three lines

A := 50;
B := 20;
Y:=A+B

are program statements. The statements specify the actions to be taken by the
computer. When the program is run, the statements are executed in order, starting
with the first statement after BEGIN and ending with the statement before END.
Note that a semicolon is placed after each statement except the final END statement.
Semicolons are used to separate statements in Pascal.

The three statements of this program are called assignment statements. An
assignment statement acts to change the 'value of a given variable. The assignment
operator is the ‘“: ="’ sign. The variable name on the left side of the : = symbol

is the variable whose value is to be changed. The right side of the : = symbol is
an expression that determines the new value which the variable is to assume. For
example, when writing Y := A + B; we mean *‘replace the current value of Y
with that of A + B.’’ Thus, after the three statements

= 50,
20;
A+ B

A.
B:
Y

are executed, A will be equal to 50, B to 20, and Y to 70. As a further example,
we can increase, decrease, or otherwise change the current value of Y by adding
to or subtracting from it. Consider

Y := 30;
A = 40;
Y:=Y + A

After these statements are executed, Y will have the value of 70: that is. the location
in memory that has been used to store Y will have the value 70 in it. Here is one
further example:

Y := 20;
Z = 50;
W:=Y + Z;
M:=W - 30

After these statements are run, W will have the value 70 and M the value 40.
In Pascal, the addition symbol is the familiar plus sign: the subtraction symbol
1s the usual minus sign. Multiplication is indicated by an asterisk. Thus A * B

¢

means ‘‘multiply A by B.”" Therefore the program statements

= 20;
30;
A * B

A.
B:
C

give a value of 600 for C.

Let us examine one simple way to form a loop in the program, that is, to
repeat a sequence of instructions until we desire to stop. This can be accomplished
through use of the WHILE statement:

WHILE X <= Y DO
BEGIN
<sequence of statements™>
END;

The WHILE statement says ‘‘execute the set of statements between BEGIN and
END while X is less than or equal to Y.”” In other words, repeat the sequence of

25

A SHORT
INTRODUCTION
TO PASCAL

26

COMPUTER
OPERATION

statements until Y is greater than X. If we write the statements

’

wZZ
aNs~O

’

WHILE N <= M DO
BEGIN
S:=PxN;
T:=T+ S;
N:=N + 1
END;
Y:=Tx2;

then the statements between BEGIN and END will be repeated until N is greater
than M. Since N starts with the value 2 (and as 1 is added each time) while M
starts with the value 4, N will take the values 2, 3, 4, 5. But when N equals 5,
it will be greater than M, and the program will proceed with the instruction
Y: = T = 2. The statements between BEGIN and END, therefore, will be repeated
three times. The first time S will equal P times N, or 12; T will be equal to 0 +
S, or 12; and N will be increased from 2 to 3. The second time S will equal P
times N, or 6 times 3, which is 18; T will be equal to 12 + 18, or 30; and N will
be increased to 4. The third time S will equal 6 times 4, or 24; T will take the
value 30 + 24, or 54; and N will be increased to 5. Then N will be greater than
M, and the next statement after END; will be operated. Now T, which has the
value 54, will be multiplied by 2, giving 108, and Y will be assigned this value.
Let us examine two other features. To read data, we simply write

READ (X, Y, Z);

This will tell the compiler to arrange for reading the values of X, Y, and Z from
a keyboard and continue with the values read as the current values of X, Y, and
Z. So we must supply values of X, Y, and Z from the keyboard. The advantage
is that we can change the values of X, Y, and Z by simply typing new values each
time the program is run. If we write

READ (X, Y, Z);
M:= X + (Y *x Z);

2, we have M = 80. If we

and input the values X = 20, Y = 30 =
= 3, and Z = 4, then we have

change our input values to read X
M = 17 after we run the above.
To print out data, we write the statement

,and Z
5,Y =
WRITE (X, Y, Z, A);

and the computer will print out the current values of X, Y, Z, A.
Note that the READ and WRITE statements assume that the programmer

will be satisfied with the standard format for the input data and print statements.
Assuming that this is the case, we can write the following statements which will
first evaluate the equation y = ax® + bx* + cx + d for values of A, B, D, and
X which are read in from the terminal and for C = 1. If the value of Y for these
particular values is greater than 2000, the value of Y will be printed as calculated
and also the value C + 1. If, however, Y is less than or equal to 2000, the
statements will calculate the smallest positive integer which, when substituted into
C, will make ax® + bx* + cx + d greater than 2000. The WRITE statement will
print this value of C and the value of ax®> + bx®> + cx + d associated with the
value of C.

READ (A, B, D, X);
C:= 0,
Y: =0,
WHILE Y <= 2000 DO
BEGIN
C:=C+ I
Y:=A*X*X*xX +B*X*xX +C=*xX + D;
END;
WRITE (C, Y);

I

We have only touched on the power of this language. It is not possible in a short
exposition to do more than show several statements and give a general idea of how
such a language operates. Nevertheless, a clever programmer could do quite a lot
with the limited vocabulary we have introduced.

There is a Pascal microprocessor version of Pascal which is widely used; it
was written at-the University of California at San Diego (UCSD). The translators
(compilers) for UCSD Pascal produce machine language that can be run on a
MICIOprocessor.

SUMMARY

1.16 Although the electronic computer is the newest and most important tech-
nological development in the last fifty years, the history of the computer extends
back to. the 19th century, when computers were first designed. The modern elec-
tronic digital computer is made possible by more recent developments in solid-
state physics and engineering, however, and dates only to the 1940s and 1950s.

In order to use a computer to solve a scientific problem or implement an
office procedure, it is necessary to organize the problem into clearly defined steps.
A flowchart is most useful in organizing these steps. Then the procedure can be
programmed, which consists of writing down the steps to be taken by the computer
in a special language developed for computer usage.

The two most used classes of computer languages are assembly language
and higher-level, or application-oriented, language. Assembly language resembles
true machine language, mirroring the internal structure of the computer for which
it is written. The higher-level languages such as Fortran, BASIC, Pascal, and Cobol
are translated by a computer to the particular machine-language representation

22

SUMMARY

28

COMPUTER
OPERATION

which the computer can run. The higher-level languages are specifically designed
to facilitate their use by the programmer. Assembly languages also provide many
aids to the programmer, but they basically correspond in structure to the specific
computer on which they will run.

The five sections of a computer and typical devices that might be used in
these sections were described. Detailed descriptions of the operation of these sec-
tions and devices are presented in the following chapters.

One thing which should become apparent from this brief introduction is that
once the statement types and details of a high-level language are learned, the job
of programming a given problem is greatly facilitated.

QUESTIONS

1.1 Discuss possible applications of microprocessors in real-time control systems.

1.2 The computer’s ability to translate languages such as Pascal and Fortran
greatly simplifies programming. Comment on the difficulty a computer might have
in translating English. What about ambiguities? Must programming languages avoid
them?

1.3 Sometimes the same computer is used by several different companies during
the day, and the computer is timeshared between these companies. Discuss prob-
lems which might arise in billing the companies for the computer’s services.

1.4 Discuss interactive computer systems and give examples of businesses and
industries that might use interactive systems.

1.5 Discuss batch proéessing and give several examples of businesses and in-
dustries that might use it.

1.6 Give examples of industries that might use real-time control systems for
manufacturing.

1.7 Values for X, Y, and Z are stored at memory addresses 40, 41, and 42,
respectively. Using the instructions for the generalized single-address computer
described in Secs. 1.9 to 1.11, write a program that will form the sum X + Y +
Z and store it at memory address 43.

1.8 Explain the difference between the address of a word in memory and the
word itself.

1.9 Given that values for X, Y, and Z are stored in locations 20, 21, and 22,
respectively, use the instructions for the computer given in Secs. 1.9 to 1.11 to
write a program that will form X? + Y? + Z? and store this at memory address
40.

1.10 The program in Table 1.4 is run with the following values when it is started:
5 in address 22, 4 in address 23, 6 in address 24, 4 in address 25, and 2 in address
26. What value will be in address 27 after the program has been run?

1.11 Convert the flowchart in Fig. 1.2 to a computer assembly-language pro-
gram, using the instructions described in the chapter.

1.12 If the program in Table 1.4 is started with location 22 containing 4, location
23 containing 4, location 24 containing 4, location 25 containing 1, and location
26 containing 2, what number will be stored in location 27 after the program is
run?

1.13 Write a program that will store X*> + X in register 40, using the assembly
language in Secs. 1.9 to 1.11, given that X is in register 20. Use fewer than 20
instructions. Now rewrite this program, using the assembly language in Sec 1.15.

1.14 If the program in Table 1.6 were operated but the number at address 40
were — 30 instead of — 50 when the program started, the number at address 43
would be the sum of all even integers from 2 to __ instead of 2 to 100.

1.15 Draw a flowchart for the program in Sec. 1.11.

1.16 Given that a value for X is stored at address 39, write a program that will
form X* and store it at address 42, using the assembly language in Secs. 1.9 to
1.11.

1.17 Draw a flowchart showing how to find the largest number in a set of five
numbers stored at locations 30, 31, 32, 33, and 34 in memory.

1.18 Values for X and Y are stored at addresses 30 and 31. Write a program
that will store the larger of the two values at address 40, using the assembly
language in Secs. 1.9 to 1.11.

1.19 Given three different numbers, determine whether they are in ascending or
descending order. Draw a flowchart for the problem, and write a program, using
the assembly language in Secs. 1.9 to 1.11. Assume that the numbers are stored
in memory locations 30, 31, and 32.

1.20 A value for Y is stored at location 55 and a value for A at location 59.
Write an assembly-language program to store AY? at location 40.

1.21 Write a program to find ax? + by + cz?, with A in location 20, B in
location 21, C in location 22, X in location 23, Y in location 24, and Z in location
25. Store your result in location 40.

1.22 A value for X is stored at address 40. Write a program that will store X°
at address 45, using fewer than 10 instruction words.

1.23 Using the assembly language described in Secs. 1.9 to 1.11, write a program
that will branch to location 300 if the number stored in memory register 25 is
larger than the number stored in register 26 and which will transfer or branch to
location 400 if the number at address 26 is equal to or larger than the number at
address 25.

1.24 Write a program that will produce the value Y — X or X, whichever is
larger, in both the assembly language in Secs. 1.9 to 1.11 and the compiler lan-
guage in Sec. 1.15. Store this value in location 300 for the assembly program, and
assign the variable B to this value for the program written in the compiler language.
For the assembly program, assume that X is in location 100 and Y in 101.

1.25 Calculate the largest of the three numbers A, B, and C and assign the largest

QUESTIONS

WUNBER SYSTERS

It is India that gave us the ingenious method
of expressing all numbers by means of ten symbols,
each symbol receiving a value of position as well as an absolute
value; a profound and important idea which appears so simple
to us now that we ignore its true merit.

Marquis de Laplace

As a mathematician, Laplace could well appreciate the decimal number system.
He was fully aware of the centuries of mental effort and sheer good luck which
had gone into the development of the number system we use, and he was in a
position to appreciate its advantages. Our present number system provides modern
mathematicians and scientists with a great advantage over those of previous civi-
lizations and is an important factor in our rapid advancement.

Since hands are the most convenient tools nature has provided, human beings
have always tended to use them in counting. So the decimal number system fol-
lowed naturally from this usage.

An even simpler system, the binary number system, has proved the most
natural and efficient system for computer use, however, and this chapter develops
this number system along with other systems used by computer technology.

NUMBER SYSTEMS

OBJECTIVES

1 An explanation of positional notation is given, and the idea of the base, or
radix, of a number system is presented.

2 The binary number system is explained as well as how to add, subtract,
multiply, and divide in this system. Then techniques for converting from binary to
decimal and decimal to binary are given.

3 Negative numbers are represented in computers by using a sign bit, and this
concept is explained. Negative numbers are often represented by using a comple-
mented form rather than a signed-magnitude form. The two major complemented

* forms, true complement and radix minus one, are described.

4 The representation of decimal numbers using bistable devices can be accom-
plished with a binary-coded-decimal (BCD) system, and several of these are ex-
plained.

§ The octal and hexadecimal number systems are widely used in computer
literature and manufacturer’s manuals. These number systems are explained along
with conversion techniques to and from decimal and binary.

DECIMAL SYSTEM

2.1 Our present system of numbers has 10 separate symbols, 0, 1, 2,3, . . .,
9, which are called Arabic numerals. We would be forced to stop at 9 or to invent
more symbols if it were not for the use of positional notation. An example of
earlier types of notation can be found in Roman numerals, which are essentially
additive: IIl = I + I + I, XXV = X + X + V. New symbols (X, C, M, etc.)
were used as the numbers increased in value: thus V rather than IIIII is equal to
5. The only importance of position in Roman numerals lies in whether a symbol
precedes or follows another symbol (IV = 4, while VI = 6). The clumsiness of
this system can be seen easily if we try to multiply XII by XIV. Calculating with
roman numerals was so difficult that early mathematicians were forced to perform
arithmetic operations almost entirely on abaci, or counting boards, translating their
results back to Roman numeral form. Pencil-and-paper computations are unbelicv-
ably intricate and difficult in such systems. In fact, the ability to perform such
operations as addition and multiplication was considered a great accomplishment
in earlier civilizations.

Now the great beauty and simplicity of our number system can be seen. It
is necessary to learn only the 10 basic numerals and the positional notational system
in order to count to any desired figure. After memorizing the addition and multi-
plication tables and learning a few simple rules, we can perform all arithmetic
operations. Notice the simplicity of multiplying 12 x 14 by using the present
system:

14
12

28
14

168

The actual meaning of the number 168 can be seen more clearly if we notice
that it is spoken as “‘onc hundred and sixty-eight.”” Basicaily, the number is a
contraction of I X 100 + 6 X 10 + 8. The important point is that the value of
each digit is determined by its position. For example, the 2 in 2000 has a different
value than the 2 in 20. We show this verbally by saying ‘‘two thousand’’ and
“twenty.”” Different verbal representations have been invented for numbers from
10 to 20 (eleven, twelve, . . .), but from 20 upward we break-oniy at powers of
10 (hundreds, thousands, millions, billions). Written numbers are always con-
tracted, however, and only the basic 10 numerals are used, regardless of the size
of the integer written. The general rule for representing numbers in the decimal
system by using positional notation is as follows: a,_, 10"~ + a,_, 10""? +

* + a, is expressed as a,_; a,_, * * - a,, where n is the number of digits to
the left of the decimal point.

The base, or radix, of a number system is defined as the number of different
digits which can occur in each position in the number system. The decimal number
system has a base, or radix, of 10. Thus the system has 10 different digits (0, I,
2,...,9), any one of which may be used in each position in a number. History
records the use of several other number systems. The quinary system, which has
5 for its base, was prevalent among Eskimos and North American Indians. Ex-
amples of the duodecimal system (base 12) may be seen in clocks, inches and feet,
and dozens or grosses.

BISTABLE DEVICES

2.2 The basic elements in early computers were relays and switches. The oper-
ation of a switch, or relay, can be seen to be essentially bistable, or binary in
nature; that is, the switch is either on (1) or off (0). The principal circuit elements
in more modern computers are transistors. The desire for reliability led designers
to use these devices so that they were always in one of two states, fully conducting
or nonconducting. A simple analogy may be made between this type of circuit and
an electric light. At any given time the light (or transistor) is either on (conducting)
or off (not conducting). Even after a bulb is old and weak, it is generally easy to
tell whether it is on or off.

Because of the large number of electronic parts used in computers, it is highly
desirable to utilize them in such a manner that slight changes in their characteristics
will not affect their performance. The best way of accomplishing this is to use
circuits which are basically bistable (having two possible states).

COUNTING IN THE BINARY SYSTEM

2.3 The same type of positional notation is used in the binary number system
as in the decimal system. Table 2.1 lists the first 20 binary numbers.

Although the same positional notation system is used, the decimal system
uses powers of 10, and the binary system powers of 2. As was previously explained,
the number 125 actually means 1 X 10% + 2 x 10" + 5 x 10° In the binary
system, the same number (125) is represented as 1111101, meaining 1 X 26 4+ 1
X229+ 1 X2+ 1x22+1>22+0x2"+1x2°

35

COUNTING IN THE
BINARY SYSTEM

36

NUMBER SYSTEMS

TABLE 2.1
DECIMAL

BINARY DECIMAL BINARY

L R (1))
: & 1 1300 i
: 1101 ‘

To express the value of a binary number, therefore, a,_; 2"~ + a,_, 2"~ 2
+ + - + ayis represented as a,_, a,_, - - - a,, where g, is either 1 or 0 and n
is the number of digits to the left of the binary (radix) point.

The foliowing examples illustrate the conversion of binary numbers to the
decimal system:

101 =1 x 2371 + 0 x 232 4] x 233
=1 xXx2+0x2'+1x2°
=4+1=25

1001 = 1 X 241 4+ 0 x 2472 4+ 0 x 2473 + 1 x 244
=1 X24+0x224+0x2'+1x20
=8+1=9

11011 =1 X 227V + 1 X 2272 4 0 x 2273 4+ 1 x 2274 +] x 22-5
=1 XxX2'+1x2240x2'+1x224+1x23
=2+1+4%+4%
= 3§

Note that fractional numbers are formed in the same general way as in the decimal
system. Just as

0123 =1 x 107" +2x 1072+ 3 x 1073
in the decimal system,
0101l =1 x2'+0x22+1x23

in the binary system.

BINARY ADDITION AND SUBTRACTION

2.4 Binary addition is performed in the same manner as decimal addition. Ac-
tually, binary arithmetic is much simpler to learn. The complete table for binary
addition is as follows:

_—— OO
+ 4+ + +
—_—0 = O

0
=1
1
=0

plus a carry-over of 1

*‘Carry-overs’’ are performed in the same manner as in decimal arithmetic.
Since 1 is the largest digit in the binary system, any sum greater than 1 requires
that a digit be carried over. For instance, 100 plus 100 binary requires the addition
of the two 1s in the third position to the left, with a carry-over. Since 1 + 1 =
0 plus a carry-over of 1, the sum of 100 and 100 is 1000. Here are three more
examples of binary addition:

DECIMAL BINARY DECIMAL BINARY DECIMAL BINARY
5 101 15 1111 31 11.01
6 _110 20 10100 5% 101.11

11 1011 35 100011 9 1001.00

Subtraction is the inverse operation of addition. To subtract, it is necessary
to establish a procedure for subtracting a larger from a smaller digit. The only case
in which this occurs with binary numbers is when 1 is subtracted from 0. The
remainder is 1, but it is necessary to borrow 1 from the next column to the left.
This is the binary subtraction table.

0
-0
1
1

S = - O

0
1
0
-1=1

with a borrow of 1

A few examples will make the procedure for binary subtraction clear:

DECIMAL BINARY DECIMAL BINARY DECIMAL BINARY
9 1001 16 10000 63 110.01

=5 - 101 =3 —11 — 43 —-100.1
4 100 13 1101 13 1.11

BINARY MULTIPLICATION AND DIVISION

2.5 The table for binary multiplication is very short, with only four entries
instead of the 100 necessary for decimal multiplication:

0x0=0
I xX0=0
0x1=0
1x1=1

The following three examples of binary multiplication illustrate the simplicity
of each operation. It is only necessary to copy the multiplicafid if the digit in the
multiplier is 1 and to copy all Os if the digit in the multiplier is a 0. The ease with
which each step of the operation is performed is apparent.

37

BINARY
MULTIPLICATION
AND DIVISION

38

NUMBER SYSTEMS

DECIMAL BINARY DECIMAL BINARY DECIMAL BINARY
12 1100 102 1100110 1.25 1.01
%10 X 1010 X 8 X 1000 X2.5 x10.1
120 0000 816 1100110000 625 101
1100 250 1010
0000 3.125 11.001
1100
1111000

Binary division is, again, very simple

other), division by zero is meaningless. The

0+1
1+1=

Here are two examples of division:

DECIMAL

5
5)25

DECIMAL

12)29.0000
24

48

2.416--

1

BINARY

101

101)11001

101
101
101

BINARY
10.011010101---

1100)11

101.00

1100

- 10100

12

1100
10000
1100
10000
1100

. As in the decimal system (or in any
complete table is

=0

To convert the quotient obtained in the second example from binary to decimal,
we would proceed as follows:

10.011010101 = 1 x 2!

Therefore, 10.01101010! binary equals approximately 2.416 decimal.

0 x 20

—_0 e O = O = - O
X X X X X X X X X
B S]
- IR BN NV S N R S

[\ o]
|
-}

= 2.0

0.0

= 0.0

= 0.25

= 0.125

= 0.0
0.03125
= 0.0

= 0.0078125
= 0.0

= 0.001953125

2.416015625

i

CONVERTING DECIMAL NUMBERS TO BINARY

2.6 There are several methods for converting a decimal number to a binary
number. The first and most obvious method is simply to subtract all powers of 2
which can be subtracted from the decimal number until nothing remains. The
highest power of 2 is subtracted first, then the second highest, etc. To convert the
decimal integer 25 to the binary number system, first the highest power of 2 which
can be subtracted from 25 is found. This is 2* = 16. Then 25 — 16 = 9. The
highest power of 2 which can be subtracted from 9 is 27, or 8. The remainder after
subtraction is 1, or 2°. The binary representation for 25 is, therefore, 11001.

This is a laborious method for converting numbers. It is convenient for small
numbers when it can be performed mentally, but is less used for larger numbers.
Instead, the decimal number is repeatedly divided by 2, and the remainder after
each division is used to indicate the coefficients of the binary number to be formed.
Notice that the binary number derived is written from the bottom up.

125 + 2 = 62 + remainder of 1
62 -~ 2 = 31 + remainder of 0
31 = 2 = 15 + remainder of 1
15 + 2 = 7 + remainder of 1
7 + 2 = 3 + remainder of 1
3 + 2= 1 + remainder of 1
1 + 2 = 0 + remainder of 1

The binary representation of 125 is, therefore, 1111101. Checking this result
gives

1 x20= 64
1 x25= 32
1x2= 16
1 x22= 38
1 x22= 4
0x2'= 0
1 x20= 1

125

This method will not work for mixed numbers. If similar methods are to be
used, first it is necessary to divide the number into its whole and fractional parts;
that is, 102.247 would be divided into 102 and 0.247. The binary representation
‘or each part is found, and then the two parts are added.

The conversion of decimal fractions to binary fractions may be accomplished
)y using several techniques. Again, the most obvious method is to subtract the
nighest negative power of 2 which may be subtracted from the decimal fraction.
Then the next highest negative power of 2 is subtracted from the remainder of the
first subtraction, and this process is continued until there is no remainder or to the
desired precision.

0.875 — 1 x 27! = 0.875 — 0.5 = 0.375
0375 — 1 x 272 = 0.375 — 0.25 = 0.125
0.125 — 1 X 273 =0.125 - 0.125 = 0

CONVERTING
DECIMAL NUMBERS
TO BINARY

NUMBER SYSTEMS

Therefore, 0.875 decimal is represented by 0.111 binary. A much simpler
method for longer fractions consists of repeatedly ‘‘doubling”” the decimal fraction.
If a 1 appears to the left of the decimal point after a multiplication by 2 is per-
formed, a 1 is added to the right of the binary fraction being formed. If after a
multiplication by 2, a 0 remains to the left of the decimal point of the decimal
number, a 0 is added to the right of the binary number. The following example
illustrates the use of this technique in converting 0.4375 decimal to the binary
system:

BINARY REPRESENTATION

2 x 0.4375 = 0.8750 0.0
2 X 0.875 = 1.750 0.01
2 x0.75 = 1.50 0.011
2x05=10 0.0111

Lthe binary‘ representation of 0.4375 is, therefore, 0.0111.

NEGATIVE NUMBERS

2.7 A standard convention adopted for writing negative numbers consists of
placing a sign symbol before a number that is negative. For instance, negative 39
is written as —39. If —39 is to be added to + 70, we write

+70 + (—39) = 31

When a negative number is subtracted from a positive number, we write +70 —
(=39) = +70 + 39 = 109. The rules for handling negative numbers are well
known and are not repeated here, but since negative numbers constitute an impor-
tant part of our number system, the techniques used to represent negative numbers
in digital machines are described.

In binary machines, numbers are represented by a set of bistable storage
devices, each of which represents one binary digit. As an example, given a set of
five switches, any number from 00000 to 11111 may be represented by the switches
if we define a switch with its contacts closed as representing a 1 and a switch with
open contacts as representing a 0. If we desire to increase the total range of numbers
that we can represent so that it will include the negative numbers from 00000 to
— 11111, another bit (or switch) will be required. We then treat this bit as a sign
bit and place it before the magnitude of the number to be represented.

Generally, the convention is adopted that when the sign bit is a 0, the number
represented is positive, and when the sign bitis a 1, the number is negative. If the
previous siuation, where five switches are used to store the magnitude of a number,
is extended so that both positive and negative numbers may be stored, then a sixth
switch will be required. When the contacts of this switch are open, the number
will be a positive number equal to the magnitude of the number stored in the other
five switches; and if the switch for the sign bit is closed, the number represented
by the six switches will be a negative number with a magnitude determined by the
other five switches. An example is shown in Fig. 2.1.

Sets of storage devices which represent a number or are handled as an entity

- _12 ﬁegister A

Sign bit

; «S’% = +22 Register B

Bs Bs; By B, B; By

are referred to as registers, and they are given names such as register A, register
B, register C, etc. We can then write that register A contains — 12 and register B
contains +22. In writing a signed number in binary form, the sign bit is set apart
from the magnitude of the number by means of an underscore, so that 00111
represents +0111, or positive 7 decimal, and 10111 represents —0111, or negative
7 decimal.

* The use of the an underscore to mark the sign bit does not indicate that there
is any difference between this bit and the other bits as the number is-stored in a
computer. Each and every binary bit 1s simply stored inf a*separate bistable device.
A symbol other than the underscore could be used to separate the sign'and mag-
nitude bits, such as a hyphen, period, or a star. Then, — 1011 (negative 11 decimal)
could be written 1-1011 or 1*1011 or 1.1011 and + 1100 as 0-1100 or 01100 or
0.1100. In fact, no marking whatever could be used, but it is felt that some
indication makes for easier reading of signed numbers which use a sign bit.

USE OF COMPLEMENTS TO REPRESENT NEGATIVE NUMBERS

2.8 The convention of using a sign bit to indicate whether a stored number is
negative or positive has been described. The magnitude of the number stored is
not always represented in normal form, however, but quite often negative numbers
are stored in complemented form. By using this technique, a machine can be made
to both add and subtract, using only circuitry for adding. The actual technique
involved is described in Chap. 5.

There are two basic types of complements which are useful in the binary and
decimal number systems. In the decimal system the two tynes are referred to as
the 10s complement and the 9s complement.

The 10s complement of any number may be formed by subtracting each digit
of the number from 9 and then adding 1 to the least significant digit of the number
thus formed. For instance, the 10s complement of 87 is 13, and the 10s complement
of 23 is 77.

To subtract' one positive number (the minuend) from another (the subtra-

'The number of digits in each number must be the same. If one number has fewer digits than the other,
then Os can be added to the left until the number of digits is the same.

a4

. FIGURE 2.1

Example of negative-
number representa-
tion.

42 hend), first the 10s complement of the subtrahend is formed, and then this 10s
complement is added to the minuend. If there is a carry from the addition of the
most significant digits, then it is discarded, the difference is positive, and the result
is correct. If there is no carry, the difference is negative, the 10s complement of
this number is formed, and a minus sign is placed before the result.

Here are some examples.
NORMAL SUBTRACTION 10s COMPLEMENT SUBTRACTION
89 89 89
NUMBER SYSTEMS —23 =23 =477
66 166
the carry is dropped
98 98 98
=& =87 = +13
11 - 111
I::—the carry is dfopped
49 49
—62 138
—-13 87 no carry, so result is negative
10s complement, or —13
54 54
=81 419
=27 73 no carry, so result is negative

10s complement, or —27

The 9s complement of a decimal number is formed by subtracting each digit
of the number from 9. For instance, the 9s complement of 23 is 76, and the 9s
complement of 87 is 12. When subtraction? is performed by using the 9s comple-
ment, the complement of the subtrahend is added as in 10s complement subtraction,
but any carry generated must be added to the rightmost digit of the result. As is
the case with 10s complement subtraction, if no carry is generated for the addition
of the most significant digits, then the result is negative. the 9s complement of the
result is formed, and a minus sign is placed before it.

NORMAL SUBTRACTION 9s COMPLEMENT SUBTRACTION

89 89 89
23 ~23 = +76
66 165
L.

66

98 98 98
—87 —§7 = +12

11 110
L
11

The number of digits in the subtrahend and minuend must be the same. If one number has more digits
than the other, zeros are added to the left of the shorter number until it has the same number of digits.

15 15 15

=3 =37 = +62
-22 77 no carry, so difference is
negative 9s complement,
which is —22
27 27 27
44 44 = +55
-17 82 no carry, so difference is
negative 9s complement,
which is —17

Complete rules for handling signs during the subtraction process and for
handling all combinations of positive and negative numbers are explained in Chap.
5. If this seems, at first, to be an unwieldy technique, note that the majority of
computers now being constructed subtract by using a complemented number.

COMPLEMENTS IN OTHER NUMBER SYSTEMS

2.9 There are two types of complements for each number system. Since now
only binary and BCD machines are being constructed in quantity, only these num-
ber systems are explained in any detail. The two types of complements and the
rules for obtaining them are as follows:

1 True complement This is formed by subtracting each digit of the number
from the radix minus one of the number system and then adding 1 to the least
significant digit of the number formed. The true complement of a number in the
decimal system is referred to as the 10s complement and in the binary system as
the 2s complement.

2 Radix-minus-one complement The radix minus one is 9 for the decimal
system and 1 for the binary system. The complement in each system is formed by
subtracting each digit of the number from the radix minus one. For instance, the
radix-minus-one complement of decimal 72 is 27.

BINARY NUMBER COMPLEMENTS

2.10 According to the rule in the preceding section, the 2s complement of a
binary number is formed by simply subtracting each digit (bit) of the number from
the radix minus one and adding a 1 to the least significant bit. Since the radix in
the binary number system is 2, each bit of the binary number is subtracted from
1. The application of this rule is actually very simple; every 1 in the number is
changed to a 0 and every O to a 1. Then a 1 is added to the least significant bit of
the number formed. For instance, the 2s complement of 10110 is 01010, and the
2s complement of 11010 is 00110. Subtraction using the 2s complement system
involves forming the 2s complement of the subtrahend and then adding this ‘‘true

BINARY NUMBER
COMPLEMENTS

46

NUMBER SYSTEMS

TABLE 2.4

DECIMAL
DIGIT EXCESS-3 CODE

TE——

9s COMPLEMENT

" 7 53

TABLE 2.5 2,4,2, 1, CODE

CODED BINARY
WEIGHT OF BIT
DECIMAL 4 2

listed. Note the 9s complement of each code group may be formed by changing
each 0 to a 1 and each 1 to a 0 in the code group.

The excess-3 code is not a weighted code, however, because weights cannot
be assigned to the bits so that their sum equals the decimal digits represented.

A weighted code in which the 9s complement may be formed by comple-
menting each binary digit is the 2, 4, 2, 1 code (see Table 2.5). If each bit of a
code group is complemented, the 9s complement of the decimal digit represented
is formed. For instance, 0010 (2 decimal) comrlemented is 1101 (7 decimal), and
1011 (5 decimal) complemented is 0100 (4 decimal). This code is widely used in
instruments and electronic calculators.

The following convention is generally adopted to distinguish binary from
decimal. A binary number is identified by a subscript of 2 placed at the end of the
number (00110,), and a decimal number by the subscript 10 (for instance, decimal
948 may be written 948,,). So we may write 0111, as 7,,. We use this convention
when necessary.

OCTAL AND HEXADECIMAL NUMBER SYSTEMS

2.12 Two other number systems are very useful in the computer industry: the
octal number system and the hexadecimal number system.
The octal number system has a base, or radix, of 8; eight different symbols

TABLE 2.6

OCTAL DECIMAL OCTAL DECIMAL
0 0 1 9
1 1 12 10
2 2 13 "
3 3 14 12
4 4 15 13
5 5 16 14
6 6 17 15
7 7 20 16
10 8 21 : 17

are used to represent numbers. These are commonly 0, 1, 2,3,4,5,6,and 7. We
show the first octal numbers and their decimal equivalents in Table 2.6.

To convert an octal number to a decimal number, we use the same sort of
polynomial as was used in the binary case, except that we now have a radix of 8
instead of 2. Therefore, 1213 in octalis 1 X 8> + 2 X 82 + 1 x 8' + 3 x §°
= 512 + 128 + 8 + 3 = 651 in decimal. Also, 1.123 in octal is 1 X 8° + 1
X8 1+2x82+3x83o0rl+4+ &+ siz=18% in decimal.

There is a simple trick for converting a binary number to an octal number.
Simply group the binary digits into groups of 3, starting at the octal point, and
read each set of three binary digits according to Table 2.7.

Let us convert the binary number 011101. First, we break it into 3s (thus
011 101). Then, converting each group of three binary digits, we get 35 in octal.
Therefore 011101 binary = 35 octal. Here are several more examples:

111110111, = 767,
110110101, = 665,
11011, = 33,
1001, = 11
10101.11, = 25.64
1100.111, = 14.7,
1011.1111, = 13.74,

Conversion from decimal to octal can be performed by repeatedly dividing
the decimal number by 8 and using each remainder as a digit in the octal number

TABLE 2.7

47

OCTAL AND
HEXADECIMAL
NUMBER SYSTEMS

NUMBER SYSTEMS

being formed. For instance, to convert 200,, to an octal representation, we divide
as follows:

200 -~ 8 = 25 remainder is O
: 3 remainder is 1
3+-8=0 remainder is 3

&
|
o]
I

Therefore, 200,, = 310,.
Notice that when the number to be divided is less than 8, we use O as the
quotient and the number as the remainder. Let us check this:

310g = 35 X 82 + 1,0 x 8ly + 0,0 X 8 = 192, + 8,, = 200,,

Here is another example. We wish to convert 3964, to octal:

3964 + 8 = 495 with a remainder of 4
495 - 8 = 61 with a remainder of 7
61l -8 =7 with a remainder of 5
7+8=0 with a remainder of 7

Therefore, 75743 = 3964,,. Checking, we find

75745 = Tio X 8 + 510 X 855 + Ty X 8y + 4y

Tio X 512y + 559 X 6419 + Tyg X 819 + 440 X 1y
3584, + 320, + 56, + 440

= 3964,

There are several other techniques for converting octal to decimal and decimal
to octal, but they are not used very frequently manually, and tables prove to be of
about as much value as anything in this process. Octal-to-decimal and decimal-to-
octal tables are readily available in a number of places, including the manuals
distributed by manufacturers of binary machines.

An important use for octal is in listings of programs and for memory ‘‘dumps’’
for binary machines, thus making the printouts more compact. The manuals for
several of the largest manufacturers use octal numbers to represent binary numbers
because of ease of conversion and compactness.

The hexadecimal number system is useful for the same reasons. Most mini-
computers and microcomputers have their memories organized into sets of bytes,
each consisting of eight binary digits. Each byte either is used as a single entity to
represent a single alphanumeric character or is broken into two 4-bit pieces. (We
examine the coding of alphanumeric characters using bytes in Chap. 7.) When the
bytes are handled in two 4-bit pieces, the programmer is given the option of
declaring each 4-bit character ‘as a piece of a binary number or as two BCD
numbers. For instance, the byte 00011000 can be declared a binary number, in
which case it is equal to 24 decimal, or as two BCD characters, in which case it
represents the decimal number 18.

When the machine is handling numbers in binary but in groups of four digits,

TABLE 2.8 '

BINARY HEXADECIMAL DECIMAL
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
110 E 14
111 F 15

it is convenient to have a code for representing each of these sets of four digits.
Since 16 possible different numbers can be represented, the digits O through 9 will
not suffice; so the letters A, B, C, D, E, and F are used also (see Table 2.8).

To convert binary to hexadecimal, we simply break a binary number into
groups of four digits and convert each group of four digits according to the preced-
ing code. Thus 10111011, = BB4, 10010101, = 95, 11000111, = C7, and
10001011, = 8B,¢. The mixture of letters and decimal digits may seem strange
at first, but these are simply convenient symbols, just as decimal digits are.

The conversion of hexadecimal to decimal is straightforward but time-con-
suming. For instance, BB represents B X 16! + B X 16° = 11 x 16 + 11 X
1 =176 + 11 = 187. Similarly,

AB6,; = 10,y X 163, + 11,4 X 16, + 6,
10,0 X 256,50 + 176,5 + 6,
2560,, + 176, + 6,

2742,

To convert, for instance, 3A6,, to decimal:

3A6,, = 3y X 167, + 10,y X 16,5 + 6,
310 X 256, + 10,y X 16,5 + 6
768,, + 160, + 6,

934,

I

i

Il

Again, tables are convenient for converting hexadecimal to decimal and dec-
imal to hexadecimal. Table 2.9 is useful for converting in either direction.

The chief use of the hexadecimal system is in connection with byte-organized
machines. And sirce most computers are now byte-organized, a knowledge of
hexadecimal is essential to using manufacturers’ manuals and to reading the current
literature.

49

OCTAL AND
HEXADECIMAL
NUMBER SYSTEMS

TABLE 2.9 HEXADECIMAL-TO-DECIMAL CONVERSION TABLE
A. INTEGER CONVERSION

H H EXAMPLE: 23224 is
E E 8192,, + 768,50 + 32,5 + 249
X DEC X DEC = 8994.0.
: 0 0 0 0 0
1 o | 1 16 1 1
2 2 2 +32 2 2
B 3 3 48 3 3
4 4 4 64 4 4
[5 5 80 5 5
8 6 (] 96 8 6
7 © 7 7 112 7 7
8 8 8 128 8 8
9 9 9 144 9 9
A A A 160 A 10
8 B B 176 B "
-C [Cc 192 C 12
D D D 208 D 13
E LB E 224 E 14
F T F 240 F 15
£
Hexadecimal
positions 4 3 2 1
B. FRACTIONAL CONVERSION
H 0123 | H 4567 H 0123 H 4567
E E E E
X DEC X X

DECIMAL X DECIMAL

.000 6000 0000 0000 | .0000 . .0000. 000Q: 0000 0000
001 0002 4414 0625 | .0001 .0000 1525 8789 0625
.002 .0004 8828 1250 | 0002 .0000 3051 7578 1250
1,002 .0007 :3242 1875 | .0003- .0000 4577 6367 1875
004 0009 7656 2500 | .0004 ..0000 6103 5156 2500

905 .0012 '2070° 3125 | . 0000 7629 3945 3125
0 | 006 .0014 6484 3750 | .0006 .DOQ0 9155 2734 3750

.007- .0017 0898 4375 | .0007 .0007-0681 1523 4375
5000 | . .} .008 .0019 5312 5000 | .0008 .0001 2207 0312 5000
5625 | .09 .0351 5626 | .009 .0021 9726 5625 | .0009 .0001 3732 9101 5625
6250 | .0A .0390 6250 | .00A .0024 4140 6250 | .000A .0001 5258 7890 6250
6875 | .0B .0429 6875 | .00B .0026 8554 6875 | .000B .0001 6784 6679 6875
.7500° | .0C .0468 7500 | .00C .0029 2968 7500 | .000C .0001 8310 5468 7500
8125 | .0D ".0507: 8125 | .00D .0031 7382 8125 | .000D .0001 9836 4257 8125
8750 | .OF .0546 8750 | .00E .0034 1796 8750 | .000E .0002 1362 3046 8750
9375 | .OF .0585 9375 | .00F .0036 6210 9375 | .0DOF .0002 2888 1835 9375

DECIMAL EQUIVALENT

mmohwpio
g
3

Hexidecimal
positions 1 2 3 4

Quite a large number of questions have been included for this chapter. For
those desiring to study octal and hexadecimal number systems further, Questions
2.58 through 2.67 contain information and exercises on octal addition and multi-
plication, and Questions 2.68 through 2.72 can be used to supplement the study
of the hexadecimal system.
50

